
JADE Tutorial for beginners

Part 2 - USING JADE
Fabio Bellifemine, TILAB

The Hague, 12/10/04

C
O

N
FI

D
EN

TI
A

L
–

A
ll

rig
ht

s
re

se
rv

ed

Table of content

• What is JADE

• Main features of JADE

• How to install and use JADE

• Graphical tools to monitor and debug agent systems

• Configuring JADE

The Hague, 12/10/04

C
O

N
FI

D
EN

TI
A

L
–

A
ll

rig
ht

s
re

se
rv

ed

JADE
• JADE is an agent platform that implements the basic services and infrastructure of a

distributed multi-agent application:
– agent life-cycle and agent mobility
– white & yellow-page services
– peer-to-peer message transport & parsing
– agent security
– scheduling of multiple agent tasks
– set of graphical tools to support monitoring, logging, and debugging

• JADE allows faster time-to-market for new services by making key functionality
available across multiple applications
– terminal2terminal and multi-party communication (N:M)
– where needed, communication based on MSISDN-identity & mobile terminals

providing (as well as accessing) services
– pro-active applications

• Some relevant features:
– is extremely light-weight, ported to J2ME-CLDC-MIDP 1.0
– enables interoperability through FIPA compliance
– is an Open Source project originated by TILAB and currently governed by an

International Board
– is used by several R&D projects

The Hague, 12/10/04

C
O

N
FI

D
EN

TI
A

L
–

A
ll

rig
ht

s
re

se
rv

ed

Faster time to market: example of source code JADE and JXTA.
public class AgentThatSearchesAndUseAService

extends jade.core.Agent {
public void setup() {
DFAgentDescription dfd = new DFAgentDescription();
dfd.setType(“SearchedService");
DFAgentDescription[] agents =
DFService.search(this,dfd);

ACLMessage msg = new
ACLMessage(ACLMessage.REQUEST);

msg.addReceiver(agents[0].getAID();
msg.setContent(“execute service");
send(msg);
System.out.println(blockingReceive());
}
}

public class PeerThatSearchesAndUsesAService {

private void startJxta() {

netPeerGroup =
PeerGroupFactory.newNetPeerGroup();

discoSvc =
netPeerGroup.getDiscoveryService();

pipeSvc = netPeerGroup.getPipeService();

}

private void startClient() {

Enumeration enum1 =
discoSvc.getLocalAdvertisements(

DiscoveryService.ADV, “SearchedService",
SERVICE);

Enumeration enum2 =
discoSvc.getRemoteAdvertisements(

null, DiscoveryService.ADV,
“SearchedService", SERVICE, 1, null);

Enumeration enum = <enum1 + enum2>;

ModuleSpecAdvertisement mdsadv =
(ModuleSpecAdvertisement)enum.nextElement();

StructuredTextDocument doc =
(StructuredTextDocument)
mdsadv.getDocument(new
MimeMediaType("text/plain"));

PipeAdvertisement pipeadv =
mdsadv.getPipeAdvertisement();

Pipe sendPipe = pipeSvc.createOutputPipe(

pipeadv, 10000);

msg = pipeSvc.createMessage();

msg.setString(TAG, “Request Service”);

sendPipe.send(msg);
Pipe myPipe =
pipeScv.createInputPipe(pipeadv);

System.out.println(myPipe.waitForMessage());
}

public void main() {

startJxta();

startClient();

}

}

The Hague, 12/10/04

C
O

N
FI

D
EN

TI
A

L
–

A
ll

rig
ht

s
re

se
rv

ed

JADE Hides FIPA From Programmers!

• No need to implement the Agent Platform
– AMS, DF, and ACC executed at start-up

• No need to implement agent-management ontology and
functionalities
– An agent is registered with the AP within its constructor

• It is given a name and an address
– The DFService class provides a simplified interface to access

the services of the DF (registration, searching, lease-renewal,
…)

• No need to implement Message Transport and Parsing
– Automatically (and possibly efficiently) done by the framework

when sending/receiving messages
• Interaction Protocols must only be extended via handle methods
• AND it is standard FIPA

The Hague, 12/10/04

C
O

N
FI

D
EN

TI
A

L
–

A
ll

rig
ht

s
re

se
rv

ed

Platform

The architectural model

Homogeneous layer

Multi-agent
application

Agent A

Agent B

Agent C

Agent D

Main
Container

Container Container

A JADE-based application is composed of a collection of active components called Agents
Each agent has a unique name
Each agent is a peer since he can communicate in a bidirectional way with all other agents
Each agent lives in a container (that provides its run time) and can migrate within the platform
One container plays the role of main (where AMS, DF live)
The main-container can be replicated via replication service

Wireless and wireline

Internet

Java J2SE J2EE J2ME

The Hague, 12/10/04

C
O

N
FI

D
EN

TI
A

L
–

A
ll

rig
ht

s
re

se
rv

ed

Java 2 Platform and JADE

JADEJADE-LEAP

• footprint of the JADE-LEAP run-time on mobile phones:
– 10-30 Kbyte if compiled with the JVM (ROMizing)
– 40-100 Kbyte otherwise

• tested over almost all Java mobile phones
• integrated with Operator APN Radius Server to allow SIM-based

addressing and authorization

The Hague, 12/10/04

C
O

N
FI

D
EN

TI
A

L
–

A
ll

rig
ht

s
re

se
rv

ed

Downloading JADE – content of the files

The Hague, 12/10/04

C
O

N
FI

D
EN

TI
A

L
–

A
ll

rig
ht

s
re

se
rv

ed

JADE command line arguments

Usage: java jade.Boot [options] [agent specifiers]
• most used options:

– -help
– -container creates a container and joins it to an existing platform
– -host <hostname> specifies the host of the platform to be joined
– -port <port number> specifies the port number ‘’ ‘’ ‘’ “ ” ‘’
– -gui launches the remote monitoring agent
– -nomtp / -mtp lists of MTPs (by default HTTP is launced)
– -conf <file name> creates/loads a configuration file
– -<key> <value>

• agent specifiers:
– list of agents to launch, separated by a space
– <agentName>:<agentClass>(<agentParams>)

e.g. java jade.Boot –gui –nomtp –port 1200 W1:x.y.W(20) W2:x.y.W(10)

Note: refers to the JADE Administrator’s Guide for the full list of options

The Hague, 12/10/04

C
O

N
FI

D
EN

TI
A

L
–

A
ll

rig
ht

s
re

se
rv

ed

The main graphical tools of JADE

• supports the management, control, monitoring, and debugging of a

multi-agent platform

– RMA (Remote Monitoring Agent)

– Dummy Agent

– Sniffer Agent

– Introspector Agent

– Log Manager Agent

– DF (Directory Facilitator) GUI

The Hague, 12/10/04

C
O

N
FI

D
EN

TI
A

L
–

A
ll

rig
ht

s
re

se
rv

ed

Remote Management Agent (RMA)

Start Sniffer
Agent

Start Dummy
Agent Start Log Manager

Agent

Start Introspector
Agent

java jade.Boot -gui

Provided functionalities:
– monitor and control

the platform and all its
remote containers

– remote management
of the life-cycle of
agents (creating,
suspending, resuming,
killing, migrating,
cloning)

– compose and send a
custom message to an
agent

– launch the other
graphical tools

– monitor (just read
operations) other
FIPA-compliant
platforms

The Hague, 12/10/04

C
O

N
FI

D
EN

TI
A

L
–

A
ll

rig
ht

s
re

se
rv

ed

Dummy Agent

Provided functionalities:
– compose and send a

custom messages
– load/save the queue

of messages from/to a
file

The Hague, 12/10/04

C
O

N
FI

D
EN

TI
A

L
–

A
ll

rig
ht

s
re

se
rv

ed

Sniffer Agent

Functionalities:
- display the flow
of interactions
between selected
agents
- display the
content of each
exchanged
message
- save/load the
flow on/from a
file

The Hague, 12/10/04

C
O

N
FI

D
EN

TI
A

L
–

A
ll

rig
ht

s
re

se
rv

ed

Introspector Agent
Functionalities:

monitoring
agent internal
state
• received/sent/

pending msg
• scheduled

behaviours
(active,
blocked) and
sub-
behaviours

• agent state
debugging
execution
• step-by-step
• slowly
• break points

The Hague, 12/10/04

C
O

N
FI

D
EN

TI
A

L
–

A
ll

rig
ht

s
re

se
rv

ed

Log Manager Agent

Is the GUI to modify at
run-time the logging of
the platform.
It is based upon
java.util.logging and it
allows to:

- browse all Logger
objects on its
container (both
JADE-specific and
application-specific)
- modify the logging
level
- add new logging
handlers (e.g. files)

The Hague, 12/10/04

C
O

N
FI

D
EN

TI
A

L
–

A
ll

rig
ht

s
re

se
rv

ed

DFGUI

GUI of the yellow-
page service,
it allows to:
–browse, register,

deregister,
modify, search
agent
descriptions
– federate with

other DFs
– execute federated

searchs

The Hague, 12/10/04

C
O

N
FI

D
EN

TI
A

L
–

A
ll

rig
ht

s
re

se
rv

ed

FYI – Some topics not fully covered by this
tutorial
• Integration with JESS (Java Expert System Shell)

– It allows reasoning about messages in JESS
– It allows a JESS program to control sending/receiving

messages and/or creating/destroying JADE behaviours
• JADE and some Internet tools

– integration with servlets, applets, JSP
• Advanced features

– distributed security, fault tolerance, support for replicated
agents and services, persistence

– application-specific persistent delivery filters & JADE kernel-
level services

– JADE and .NET
– JADE, Protégé, XML, RDF and OWL

Note: the documentation includes a tutorial for almost each of these aspects

